Abstract

The Si/Al ratio is a key parameter of acid-base, structural, textural and, consequently, catalytic properties of amorphous crystalline (micro- and mesoporous) aluminosilicates. The changes of structural and textural characteristics of Al-Si aerogels with gradual increase of aluminum content are investigated. Aerogels were prepared via sol-gel method using prehydrolysed tetraethoxysilane and aluminium isopropoxide stabilized by acetylacetone. The gelation of the obtained sols took place in the presence of ammonia with the following drying in supercritical isopropanol. It was shown all aluminum reacts with prehydrolyzed tetraethoxysilane forming spherical particles in case the content of Al in the samples is less than 20 mol %. Aluminum drives the increase of interparticle coupling leading to the particle agglomeration, which is associated with the increase of the particle size and decrease of specific surface area and pore volume. For the samples with the aluminum content of >50 mol % the formation of pseudoboehmite plate-like particles is observed. The pseudoboehmite particles prevent the sintering of SiO2 particles that leads to the increase of the aerogel specific surface area and pore volume. In case the high aluminum content (>80 mol %) the silica particles serve as a connector between boehmite plates. The ratio between Brønsted and Lewis acid sites decreases gradually with the increase of aluminum content of the aluminosilicate aerogels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.