Abstract

The loss of nigral dopaminergic neurons typical in Parkinson's disease (PD) is responsible for hyperexcitability of medium spiny neurons resulting in abnormal corticostriatal glutamatergic synaptic drive. Considering the neuroprotective effect of exercise, the changes promoted by exercise on AMPA-type glutamate receptors (AMPARs), and the role of activity-regulated cytoskeleton-associated protein (Arc) in the AMPARs trafficking, we studied the impact of short and long-term treadmill exercise during evolution of the unilateral 6-hydroxy-dopamine (6-OHDA) animal model of PD. Wistar rats were divided into sedentary and exercised groups, with and without lesion by 6-OHDA and followed up to 4months. The exercised groups were subjected to a moderate treadmill exercise 3×/week. We measured the proteins tyrosine hydroxylase (TH), Arc, GluA1, and GluA2/3 in the striatum, substantia nigra, and motor cortex. Our results showed a higher reduction of TH expression in all sedentary groups when compared to all exercised groups in striatum and substantia nigra. In general, larger changes occurred in the striatum in the first and third months after training. After 1month of exercise, there was significant increase of GluA2/3 with concomitant reduction of GluA1 and Arc. As a balanced system, these changes were reversed in the third month, showing an increase of Arc and GluA1 and decrease of GluA2/3. Similar results for GluAs and Arc were observed in the motor cortex of the exercised animals. These modifications may be relevant for corticostriatal circuits in PD, since the exercise-dependent plasticity can modulate GluAs expression and maybe neuronal excitability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call