Abstract

The multifunctional role of shade trees for conservation of biodiversity and ecosystem services in natural forests and agroforests is well documented, yet we lack insights into the impact of shade tree species identity on pest and disease dynamics on agroforestry crops such as coffee and cacao, and its implications for management. We conducted two surveys on the impact of shade tree species identity and canopy cover on pests, diseases and a fungal hyperparasite on Arabica coffee in southwestern Ethiopia, which is one of the areas of origin of Arabica coffee. One survey was in a commercial plantation, and the other along a management gradient from only little managed coffee growing in the natural forest to intensively managed commercial plantations. To link these findings to current shade tree selection criteria, we complemented these surveys by interviews with farmers and managers. Shade tree species identity left a weak imprint on insect pest levels, and insect pests levels differed strongly in the strength and direction of their response to canopy cover. In contrast to the insect pests, the incidence of coffee leaf rust and its hyperparasite, as well as coffee berry disease, differed among shade tree species, with particularly high levels of coffee leaf rust and the hyperparasite underneath the canopy of the shade trees Acacia abyssinica and Croton macrostachyus, and coffee berry disease underneath the canopy of Acacia abyssinica and Polyscias fulva. Smallholder farmers used many criteria for selecting shade trees, such as leaf traits and competition for soil moisture, but low priority is given to the effect of shade tree species identity on pests and diseases. Our findings help to understand spatial variation in pest and disease dynamics in natural forests and agroforests, and may inform the selection of shade tree species by coffee producers and thereby contribute to ecologically-informed pest and disease management. Importantly, our finding highlight the potential for using tree identity for the sustainable management of pests and diseases, with relevance for global agroforestry systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call