Abstract

BackgroundShotgun metagenomics is increasingly used to characterise microbial communities, particularly for the investigation of antimicrobial resistance (AMR) in different animal and environmental contexts. There are many different approaches for inferring the taxonomic composition and AMR gene content of complex community samples from shotgun metagenomic data, but there has been little work establishing the optimum sequencing depth, data processing and analysis methods for these samples. In this study we used shotgun metagenomics and sequencing of cultured isolates from the same samples to address these issues. We sampled three potential environmental AMR gene reservoirs (pig caeca, river sediment, effluent) and sequenced samples with shotgun metagenomics at high depth (~ 200 million reads per sample). Alongside this, we cultured single-colony isolates of Enterobacteriaceae from the same samples and used hybrid sequencing (short- and long-reads) to create high-quality assemblies for comparison to the metagenomic data. To automate data processing, we developed an open-source software pipeline, ‘ResPipe’.ResultsTaxonomic profiling was much more stable to sequencing depth than AMR gene content. 1 million reads per sample was sufficient to achieve < 1% dissimilarity to the full taxonomic composition. However, at least 80 million reads per sample were required to recover the full richness of different AMR gene families present in the sample, and additional allelic diversity of AMR genes was still being discovered in effluent at 200 million reads per sample. Normalising the number of reads mapping to AMR genes using gene length and an exogenous spike of Thermus thermophilus DNA substantially changed the estimated gene abundance distributions. While the majority of genomic content from cultured isolates from effluent was recoverable using shotgun metagenomics, this was not the case for pig caeca or river sediment.ConclusionsSequencing depth and profiling method can critically affect the profiling of polymicrobial animal and environmental samples with shotgun metagenomics. Both sequencing of cultured isolates and shotgun metagenomics can recover substantial diversity that is not identified using the other methods. Particular consideration is required when inferring AMR gene content or presence by mapping metagenomic reads to a database. ResPipe, the open-source software pipeline we have developed, is freely available (https://gitlab.com/hsgweon/ResPipe).

Highlights

  • Shotgun metagenomics is increasingly used to characterise microbial communities, for the investigation of antimicrobial resistance (AMR) in different animal and environmental contexts

  • Impact of sequencing depth on Antimicrobial resistance (AMR) profiles Metagenomic sequencing produced approximately 200 million metagenomic 150 bp paired-end reads per sample i.e. over 56 gigabases per sample (Additional file 3: Table S1), of which < 0.05% of reads mapped with 100% identity to a known AMR-related sequence

  • The number of reads mapping to AMR gene families was largest in pig caeca (88,816 reads) and effluent (77,044 reads)

Read more

Summary

Introduction

Shotgun metagenomics is increasingly used to characterise microbial communities, for the investigation of antimicrobial resistance (AMR) in different animal and environmental contexts. There are many different approaches for inferring the taxonomic composition and AMR gene content of complex community samples from shotgun metagenomic data, but there has been little work establishing the optimum sequencing depth, data processing and analysis methods for these samples. Culture-dependent methods have the advantage of isolating individual strains for detailed analysis, but hugely underestimate species and AMR gene diversity. Culture-independent methods typically involve shotgun metagenomics, in which all DNA in a sample (i.e. from the complete microbial community) is extracted and sequenced, and the sequencing reads are used to estimate AMR gene and/or species distributions. Individuals have been shown to harbour multiple diverse AMR gene variants, strains and species of Enterobacteriaceae in their gastrointestinal tract [11, 12], highlighting that single-colony subcultures do not recover the true AMR reservoir even within a small subsection of a microbial community

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.