Abstract

In satisfying an information need by a Question Answering (QA) system, there are text understanding approaches which can enhance the performance of final answer extraction. Exploiting the FrameNet lexical resource in this process inspires analysis of the levels of semantic representation in the automated practice where the task of semantic class and role labeling takes place. In this paper, we analyze the impact of different levels of semantic parsing on answer extraction with respect to the individual sub-tasks of frame evocation and frame element assignment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.