Abstract

This paper deals with multi-server queues with a finite buffer of size N in which units waiting for service generate into priority at a constant rate, independently of other units in the buffer. At the epoch of a unit's priority generation, the unit is immediately taken for service if there is one unit in service that did not generate into priority while waiting; otherwise such a unit leaves the system in search of immediate service elsewhere. The arrival stream of units is a Markovian arrival process (MAP) and service requirements are of phase (PH) type. Our interest is in the continuous-time Markov chain describing the state of the queue at arbitrary times, which constitutes a finite quasi-birth-and-death (QBD) process. We give formulas well suited for numerical computation for a variety of performance measures, including the blocking probability, the departure process, and the stationary distributions of the system state at pre-arrival epochs, at post-departure epochs and at epochs at which arriving units are lost. Illustrative numerical examples show the effect of several parameters on certain probabilistic descriptors of the queue for various levels of congestion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.