Abstract
In this work, unintentionally doped GaN samples were prepared on GaN template by radio frequency (RF)-plasma MBE technique using two different RF-plasma powers. Photoluminescence (PL), steady state photoconductivity (PC) and ultrafast optical pump-probe spectroscopy measurements have been carried out to characterize the samples. The effect of RF-plasma power towards unintentional doping and giving rise to yellow luminescence (YL) is discussed. Our PC measurements show relatively faster decay for sample grown with higher RF-plasma power. In addition, the ultrafast optical pump-probe spectroscopy results show the presence of various defect levels with different relaxation times. A faster ultrafast relaxation time from the conduction band to the closest defect level and conduction band to the next defect level was observed for the sample grown with higher plasma power. A comparatively low defect density and faster carrier relaxation observed in higher RF-plasma power grown samples is caused by lower impurities and gallium vacancies. The results imply that RF-plasma power is very important parameter for the growth of epitaxial GaN films and undesirable impurities and gallium vacancies might get incorporated in the epitaxial GaN films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.