Abstract
AbstractThe impact of revised simplified Arakawa‐Schubert (RSAS) convective parameterization scheme in Climate Forecast System (CFS) version 2 (CFSv2) on the simulation of active and break phases of Indian summer monsoon (ISM) has been investigated. The results revealed that RSAS showed better fidelity in simulating monsoon features from diurnal to daily scales during active and break periods as compared to SAS simulation. Prominent improvement can be noted in simulating diurnal phase of precipitation in RSAS over central India (CI) and equatorial Indian Ocean (EIO) region during active periods. The spatial distribution of precipitation largely improved in RSAS simulation during active and break episodes. CFSv2 with SAS simulation has noticeable dry bias over CI and wet bias over EIO region which appeared to be largely reduced in RSAS simulation during both phases of the intraseasonal oscillation (ISO). During active periods, RSAS simulates more realistic probability distribution function (PDF) in good agreement with the observation. The relative improvement has been identified in outgoing longwave radiation, monsoon circulations, and vertical velocities in RSAS over SAS simulation. The improvement of rainfall distribution appears to be contributed by proper simulation of convective rainfall in RSAS. CFSv2 with RSAS simulation is able to simulate observed diurnal cycle of rainfall over CI. It correctly reproduces the time of maximum rainfall over CI. It is found that the improved feedback between moisture and convective processes in RSAS may be attributed to its improved simulation. Besides improvement, RSAS could not reproduce proper tropospheric temperature, cloud hydrometeors over ISM domain which shows the scope for future development.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.