Abstract

Keeping the systematic bias of the climate forecast system model version 2 (CFSv2) in mind, an attempt is made to improve the Indian summer monsoon (ISM) rainfall variability in the model from diurnal through daily to seasonal scale. Experiments with default simplified Arakawa–Schubert (SAS) and a revised SAS schemes are carried out to make 15 years climate run (free run) to evaluate the model fidelity with revised SAS as compared to default SAS. It is clearly seen that the revised SAS is able to reduce some of the biases of CFSv2 with default SAS. Improvement is seen in the annual seasonal cycle, onset and withdrawal but most importantly the rainfall probability distribution function (PDF) has improved significantly. To understand the reason behind the PDF improvement, the diurnal rainfall simulation is analysed and it is found that the PDF of diurnal rainfall has significantly improved with respect to even a high resolution CFSv2 T382 version. In the diurnal run with revised SAS, the PDF of rainfall over central India has remarkably improved. The improvement of diurnal cycle of total rainfall has actually been contributed by the improvement of diurnal cycle of convection and associated convective rainfall. This is reflected in outgoing longwave radiation and high cloud diurnal cycle. This improvement of convective cycle has resolved a long standing problem of dry bias by CFSv2 over Indian land mass and wet bias over equatorial Indian Ocean. Besides the improvement, there are some areas where there are still scopes for further development. The cold tropospheric temperature bias, low cloud fractions need further improvement. To check the role of shallow convection, another free run is made with revised SAS along with shallow convection (SC). The major difference between the new and old SC schemes lies in the heating and cooling behavior in lower-atmospheric layers above the planetary boundary layer. However, the inclusion of revised SC scheme could not show much improvement as compared to revised SAS with deep convection. Thus, it seems that revised SAS with deep convection can be a potentially better parameterization scheme for CFSv2 in simulating ISM rainfall variability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call