Abstract

AbstractSubkilometer processes are critical to the physics of aerosol‐cloud interaction (ACI) but have been dependent on parameterizations in global model simulations. We thus report the strength of ACI in the Ultra‐Parameterized Community Atmosphere Model (UPCAM), a multiscale climate model that uses coarse exterior resolution to embed explicit cloud‐resolving models with enough resolution (250 m horizontal, 20 m vertical) to quasi‐resolve subkilometer eddies. To investigate the impact on ACIs, UPCAM's simulations are compared to a coarser multiscale model with 4 km horizontal resolution. UPCAM produces cloud droplet number concentrations (Nd) and cloud liquid water path (LWP) values that are higher than the coarser model but equally plausible compared to observations. Our analysis focuses on the Northern Hemisphere (20–50°N) oceans, where historical aerosol increases have been largest. We find similarities in the overall radiative forcing from ACIs in the two models, but this belies fundamental underlying differences. The radiative forcing from increases in LWP is weaker in UPCAM, whereas the forcing from increases in Nd is larger. Surprisingly, the weaker LWP increase is not due to a weaker increase in LWP in raining clouds, but a combination of weaker increase in LWP in nonraining clouds and a smaller fraction of raining clouds in UPCAM. The implication is that as global modeling moves toward finer than storm‐resolving grids, nuanced model validation of ACI statistics conditioned on the existence of precipitation and good observational constraints on the baseline probability of precipitation will become key for tighter constraints and better conceptual understanding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call