Abstract

To investigate, invivo, the effect of local application of Resolvin E1 (RvE1) on the bone regeneration of critical-size defects (CSDs) in Wistar rats utilizing gene expression and micro-computed tomographic (micro-CT) analysis. The inflammation-resolving actions of RvE1 are well established. The molecular mechanism of its bone-regenerative actions has been of significant interest in recent years; however, there is limited information regarding the same. Thirty Wistar rats with a 5 mm induced critical-size calvarial defect were randomly allocated into four groups: no treatment/negative control (n = 5), treatment using bovine bone grafts/positive control (n = 5), treatment using local delivery of RvE1 (n = 11) and treatment using RvE1 mixed with bovine bone graft (n = 9). After 4 weeks, RNA isolation, complementary DNA synthesis and real-time polymerase chain reaction were used for genetic expression of alkaline phosphatase (ALP), osteocalcin (OCN) and osteopontin (OPN). The rats were sacrificed after 12 weeks and micro-CT imaging was performed to analyse the characteristics of the newly formed bone (NFB). The data were analysed using ANOVA and the least significant difference tests (α ≤ .05). The RvE1 + bovine graft group had statistically highest mean NFB (20.75 ± 2.67 mm3 ) compared to other groups (p < .001). Similarly, RvE1 + bovine graft group also demonstrated statistically highest mean genetic expression of ALP (31.71 ± 2.97; p = .008) and OPN (34.78 ± 3.62; p < .001) compared to negative control and RvE1 groups. Resolvin E1 with adjunct bovine bone graft demonstrated an enhanced bone regeneration compared to RvE1 or bovine graft alone in the calvarial defect of Wistar rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call