Abstract

An analysis of isothermal acoustic traveling waves in a particular sub-class of Maxwell fluids, specifically, those which behave like perfect gases and wherein the shear viscosity is proportional to the square of the mass density, is presented. Exact solutions are derived and analyzed, shock thickness results are computed, and the thermodynamic consistency of the isothermal assumption is verified vis-à-vis the Mach number values considered. It is shown that, within the range where both yield dispersed shock profiles, the Maxwell case leads to significantly smaller shock thicknesses and more asymmetric solution profiles than those admitted by the corresponding Newtonian (fluid) case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.