Abstract

Electrospinning is one of the most important methods used for the production of nanostructured materials. Electrospun nanofibers are used in a wide spectrum of applications such as drug delivery systems, filtration, fog harvesting, tissue engineering, smart textiles, flexible electronics, and more. Control of the manufacturing process is essential for further technology developments. In electrospinning, relative humidity is a crucial parameter that influences nearly all the properties of the collected fibers, such as morphology, mechanical properties, liquid retention, wetting properties, phase composition, chain conformation, and surface potential. Relative humidity is a determining component of a reliable process as it governs charge dissipation and solvent evaporation. This review summarizes the electrospinning process and its applications, phase separation processes, and impact of relative humidity on the properties of polymer fibers. We investigated relative humidity effects on both hydrophilic and hydrophobic polymers using over 20 polymers and hundreds of solvent systems. Most importantly, we underlined the indisputable importance of relative humidity in process repeatability and demonstrated its impact on almost all aspects of fiber production from a solution droplet to an electrospun network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.