Abstract

BackgroundWe investigate whether the extent of educational inequalities in the use of Pap smears (cervical cancer screening) and mammograms (breast cancer screening) in Belgium has changed over time in accordance with the pattern predicted by diffusion of innovation theory, as well as how the regional cancer screening policies of Flanders and Wallonia influence this pattern.MethodsData were obtained from five successive cross-sectional waves (1997–2001–2004-2008-2013) of the Belgian Health Interview Survey. Final sample sizes consisted of 8988 women aged 25–64 years for cervical cancer screening and 4194 women aged 50–69 years for breast cancer screening. We calculated absolute and relative measures of inequality, more specifically, the slope index of inequality (SII) and the relative index of inequality (RII), and their development over time.ResultsIn both Flanders and Wallonia, mammogram use increased greatly between 1997 and 2013, while Pap smear use has remained quite stable over time. Educational inequalities in cervical-cancer screening have been largely persistent over time in both regions. In contrast, educational inequalities in breast cancer screening fluctuated more between 1997 and 2013. Between 1997 and 2001, when the breast cancer screening programme was implemented in Flanders, RII reduced significantly by 45%. Inequality measures did not change significantly in Wallonia, where it is known that most women are screened opportunistically outside the programme.ConclusionsBy focussing on Belgium, this study demonstrates that regional variations in the support of a national screening programme can result in regional variations in the pattern of diffusion for cancer screening, as well as to the development of inequalities in cancer screening participation. Moreover, the findings demonstrate that high visibility and awareness of the screening programme, as was more the case in Flanders than it was in Wallonia, are required in order to reduce or eliminate educational inequalities in cancer screening participation over time. General practitioners and gynaecologists can play a decisive role in this regard.

Highlights

  • We investigate whether the extent of educational inequalities in the use of Pap smears and mammograms in Belgium has changed over time in accordance with the pattern predicted by diffusion of innovation theory, as well as how the regional cancer screening policies of Flanders and Wallonia influence this pattern

  • This study focuses on how educational inequalities in the use of mammograms and Pap smears have developed over time, relative to the pattern predicted by Diffusion of innovation (DOI) theory and whether this pattern varies according to regional differences in screening policies

  • In the case of opportunistic screening, which was the strategy for offering Pap smears in Flanders and Wallonia between 1997 and 2013, diffusion patterns did not reflect those predicted by DOI theory

Read more

Summary

Introduction

We investigate whether the extent of educational inequalities in the use of Pap smears (cervical cancer screening) and mammograms (breast cancer screening) in Belgium has changed over time in accordance with the pattern predicted by diffusion of innovation theory, as well as how the regional cancer screening policies of Flanders and Wallonia influence this pattern. Developments in socioeconomic inequalities in the uptake and spread of screening tests over time remain unclear. According to DOI theory, new preventive technologies or health interventions (e.g. cancer screening tests) spread through a population in a predictable pattern resembling an S-shaped curve [12, 13]. When a cancer screening test is first introduced, only a few people will adopt the innovation. As the rate of uptake accelerates and enough people use the test (the ‘early majority’), the screening will gain critical mass and become increasingly widespread through the population. Rates of participation in cancer screening, as well as the associated educational inequalities in use, tend to fluctuate over time along an S-shaped curve

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.