Abstract

Abstract The explanation of runoff behavior is challenging due to variable weather conditions, and catchment characteristics. The parameter equifinality in catchment-scale models turns into the uncertain distribution of water balance components even though models tend to represent total runoff well. This study aims to discuss long-term runoff and evapotranspiration (ET) variations affected by regional allocation and catchment characteristics in Latvia. The study applies the observational runoff data from drainage fields and small catchment scales. The sites represent the spatially different regions in Latvia with relatively variable yearly precipitation amounts. The robust data of surface slope gradients, the share of subsurface drainage systems, arable and grasslands, and ditch networks describes the differences in the catchment characteristics. The results reveal that higher long-term yearly average runoff and ET rates are experienced by the regions with higher yearly precipitation amounts. Simultaneously, the higher the long-term yearly average precipitation and steeper the surface slope gradient, the proportionally (%) higher is the runoff contribution into the water balance. When compared with the small catchments, the soil profiles at drainage fields might store more water after the subsurface drainage runoff is running short. Consequently, the small catchments might experience the later response of subsurface drainage runoff after the dry seasons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.