Abstract

Pressure pulsations into a centrifugal compressor can move its operating point into surge. This is concerning in pipeline stations where centrifugal compressors operate in series/parallel with reciprocating compressors. Sparks (1983, “On the Transient Interaction of Centrifugal Compressors and Their Piping Systems,” ASME Paper No. 83-GT-236); Kurz et al. (2006, “Pulsations in Centrifugal Compressor Installations,” ASME Paper No. GT2006-90700); and Brun et al. (2014, “Impact of the Piping Impedance and Acoustic Characteristics on Centrifugal Compressor Surge and Operating Range,” ASME J. Eng. Turbines Power, 137(3), p. 032603) provided predictions on the impact of periodic pressure pulsation on the behavior of a centrifugal compressor. This interaction is known as the “compressor dynamic response” (CDR) theory. Although the CDR describes the impact of the nearby piping system on the compressor surge and pulsation amplification, it has limited usefulness as a quantitative analysis tool, due to the lack of prediction tools and test data for comparison. Testing of compressor mixed operation was performed in an air loop to quantify the impact of periodic pressure pulsation from a reciprocating compressor on the surge margin (SM) of a centrifugal compressor. This data was utilized to validate predictions from Sparks’ CDR theory and Brun’s numerical approach. A 50 hp single-stage, double-acting reciprocating compressor provided inlet pulsations into a two-stage 700 hp centrifugal compressor. Tests were performed over a range of pulsation excitation amplitudes, frequencies, and pipe geometry variations to determine the impact of piping impedance and resonance responses. Results provided clear evidence that pulsations can reduce the surge margin of centrifugal compressors and that geometry of the piping system immediately upstream and downstream of a centrifugal compressor will have an impact on the surge margin reduction. Surge margin reductions of over 30% were observed for high centrifugal compressor inlet suction pulsation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call