Abstract

AbstractIn the Gulf of Alaska region, sediment has rapidly accumulated (>1 km/my) in the trench sourced from intensified glaciation in the past ∼1.2 million years. This rapid sediment accumulation increases overburden and should accelerate dehydration of hydrous minerals by insulating the underlying sediment column. These processes have the potential to generate fluid overpressures in the low permeability sediments entering the subduction zone. A 1‐D model was developed to simulate dehydration reaction progress and investigate excess pore pressures as sediments approach the trench and are subducted. At the deformation front, simulated temperatures increase by ∼30°C due to the insulating effect of trench sediments. As a result, opal‐A begins to react to form quartz while smectite remains mostly unreacted. Loading due to the trench sediments elevates excess pore pressures to ∼30% of lithostatic pressure at the deformation front; however, deformation front excess pore pressures are sensitive to assumptions about the permeability of outer wedge sediments. If the outer wedge sediments are coarse‐grained and high‐permeability rather than mud‐dominated, excess pore pressures are lower but still have an insulating effect. During early subduction, simulated pore pressures continue to rise and reach ∼70% of lithostatic by 60 km landward. The 1‐D modeling results suggest that the elevated pore pressures are primarily due to loading and that dehydration reactions are not a significant component of excess pore pressure generation at this margin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call