Abstract
Environment factors such as radiation play an important role in the incidence of lung cancer. In spite of substantial efforts in experimental study and mathematical modeling, it is still a significant challenge to estimate lung cancer risk from radiation. To address this issue, we propose a stochastic model to investigate the impact of radiation on the development of lung cancer. The proposed three-stage model with clonal expansion is used to match the data of the male and female patients in the Osaka Cancer Registry (OCR) and Life Span Study (LSS) cohort of atomic bomb survivors in Hiroshima and Nagasaki. Our results indicate that the major effect of radiation on the development of lung cancer is to induce gene mutations for both male and female patients. In particular, for male patients, radiation affects the mutation in normal cells and the transformation from premalignant cells to malignant ones. However, radiation for female patients increases the mutation rates of the first two mutations in the stochastic model. The established relationship between parameters and radiation will provide insightful prediction for the lung cancer incidence in the radiation exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.