Abstract

The enzyme-substrate contacts that are believed to be involved in depurination by proton transfer have been modelled by protonation and deprotonation of 3-methyl-2'-deoxyadenosine (3-MDA) using quantum mechanical calculations in the gas-phase and solution media. The change in the charge distribution on the sugar ring and nucleobase that is introduced by the protonation and deprotonation strongly affects the N-glycosidic bond length. The unimolecular cleavage and hydrolysis of the N-glycosidic bond, involving D(N)*A(N) and A(N)D(N) pathways, have been considered at several levels of theory. The trend in the energy barriers is A(N)D(N) > cleavage > D(N)*A(N). All probable proton transfer reactions resulting from enzyme-substrate contacts do not facilitate the N-glycosidic bond cleavage of 3-MDA. The deprotonation of 3-MDA that may result from the interaction between H6 and enzyme do not facilitate bond cleavage. The protonation at N7 induces more positive charge on the sugar ring and further facilitates the depurination relative to the protonation at N1. The changes in the charges calculated on the ribose and nucleobase are in good relationship with the C1'-C2', C1'-O4', and N-glycosidic bond lengths along the cleavage. The change in energy barrier ΔE of glycosidic bond cleavage from the gas-phase to solution media strongly depends on the charge of the species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.