Abstract

Abstract The paper presents a numerical analysis of the impact of working propellers on the aerodynamics of the aircraft. Analysis was made on the example of a twin-engined, unmanned aircraft with electric drive during the low altitude flight. Three configurations were studied and compared: the plane without propellers, the plane with pusher propellers and the plane with tractor propellers. For each configuration distributions of aerodynamic coefficients along the span of the wing and their global values for the entire aircraft were estimated. Calculations were performed using the Fluent solver with implementation of a simplified model of propeller based on the Blade Element Theory. Results of the analysis indicate a slight advantage of the tractor propellers configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.