Abstract
Cyclodextrins (CDs) have attracted considerable interest as model systems in supramolecular host-guest chemistry. They are described as hollow truncated cones with a hydrophilic outer surface and a nonpolar inner cavity suitable for small molecules' encapsulation.[1] By virtue of their character, CDs are used as excipients to improve the aqueous solubility of active pharmaceutical ingredients (APIs). High-pressure crystallisation techniques have been established as a suitable tool for exploring the phenomenon of polymorphism and solvate formation of pharmaceutical compounds throughout numerous examples reported in the literature.[2] Thus, exploring the inclusion-complex formation and the polymorphic behaviour of CDs with APIs at high pressure would be an interesting extension of the technique. The present work describes the attempt of an in-situ crystallisation of β-CD·acetaminophen inclusion complex and compression studies of the known β-CD·acetaminophen complex[3] in different crystallisation media at pressures up to 1.0 GPa. A new high-pressure crystal form observed at 0.8 GPa as well as unexpected results are presented herein. The crystals have been characterised by means of polarised optical microscopy, Raman spectroscopy and single-crystal X-ray diffraction using both home and synchrotron sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Crystallographica Section A Foundations and Advances
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.