Abstract

Excessive bulking force during primary access of the ureteral access sheath may induce ureteral injury. We investigated the efficacy of preoperative α-blockade to reduce ureteral access sheath insertion force and determine the upper limit required to avoid ureteral injury. In this randomized controlled trial 135 patients from a single institution who had ureteropelvic junction or renal pelvis stones and were scheduled to undergo retrograde intrarenal surgery were prospectively enrolled from December 2015 to January 2017. Of the patients 41 and 42 were randomly assigned to the control and experimental groups, respectively. The experimental group received α-blockade preoperatively. The 21 patients who were pre-stented were assessed separately. We developed a homemade device to measure maximal ureteral access sheath insertion force. Our ureteral access sheath insertion force measurement device showed excellent reproducibility. Higher insertion velocity resulted in greater maximal sheath insertion force. Maximal insertion force in the α-blockade group was significantly lower than in the control group at the ureterovesical junction (p = 0.008) and the proximal ureter (p = 0.036). Maximal insertion force in the α-blockade group was comparable to that in pre-stented patients. Female patients and patients 70 years old or older showed a lower maximal ureteral access sheath insertion force than their counterparts. The rate of grade 2 or greater ureteral injury was lower in the α-blockade group than in controls (p = 0.038). No injury occurred in any case in which ureteral access sheath insertion force did not exceed 600 G. Preoperative α-blockade and slow sheath placement may reduce maximal ureteral access sheath insertion force. If the force exceeds 600 G, a smaller diameter sheath may be an alternative. Alternatively the procedure can be terminated and followed later by pre-stented retrograde intrarenal surgery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.