Abstract

Background: Observational studies of intermittent hemodialysis therapy have reported that the excess decrease in K+ concentration in plasma (KP) during treatment is associated with the destabilization of cardiac function. Elucidating the mechanism by which the decrease in KP impairs myocardial excitation is indispensable for a deeper understanding of prescription design. Methods: In this study, by using an electrophysiological mathematical model, we investigated the relationship between KP dynamics and cardiomyocyte excitability for the first time. Results: The excess decrease in KP during treatment destabilized cardiomyocyte excitability through the following events: (1) a decrease in KP led to the prolongation of the depolarization phase of ventricular cells due to the reduced potassium efflux rate of the Kr channel, temporarily enhancing contraction force; (2) an excess decrease in KP activated the transport of K+ and Na+ through the funny channel in sinoatrial nodal cells, disrupting automaticity; (3) the excess decrease in KP also resulted in a significant decrease in the resting membrane potential of ventricular cells, causing contractile dysfunction. Avoiding an excess decrease in KP during treatment contributed to the maintenance of cardiomyocyte excitability. Conclusions: The results of these mathematical analyses showed that it is necessary to implement personal prescription or optimal control of K+ concentration in dialysis fluid based on predialysis KP from the perspective of regulatory science in dialysis treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call