Abstract

Corynebacterium glutamicum, a gram-positive soil bacterium, has been used extensively for the industrial production of l-glutamate and other amino acids. In this study, an Escherichia coli– C. glutamicum shuttle expression plasmid harboring polyhydroxybutyrate (PHB) synthesis genes, phbCAB from Ralstonia eutropha, was constructed under the Ptrc promoter. C. glutamicum harboring this plasmid accumulated 3–13% PHB with a weight average molecular mass of 125,400 and a polydispersity of 11.3 when grown on glucose. PHB synthesis related enzyme activities including β-ketothiolase (PhbA), acetoacetyl-CoA reductase (PhbB) and PHB synthase (PhbC) were found to be constitutively produced independent of IPTG. l-Glutamate production increased 39–68% in two C. glutamicum strains harboring PHB synthesis genes compared with their parent strains in shake flask experiments. In fermentor studies, the recombinant produced approximately 23% more l-glutamate compared with that of the wild type, and yielded less intermediate metabolites or by-products including α-ketoglutarate, l-glutamine and lactate. These results suggested that the expression of phbCAB genes in C. glutamicum could help regulate glutamate production metabolism. This demonstrated that the expression of PHB synthesis genes has a positive effect on l-glutamate production in C. glutamicum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.