Abstract
Wastewater treatment plants (WWTPs) are key components for the capture of microplastics (MPs) before they are released into natural waterways. Removal efficiencies as high as 99% may be achieved but sub-micron MPs as well as nanoplastics have been overlooked because of analytical limitations. Furthermore, short MP fibres are of concern because of their low capture rate as well as the lack of understanding of their influence on purification system efficiency. This study has investigated the impact of poly(ethylene terephthalate) (PET) short nanofibres on the performance of polyvinylidene fluoride (PVDF) ultrafiltration membranes during cross-flow operation. Model MP fibres with an average length of 10 ± 7 μm and a diameter of 142 ± 40 nm were prepared via a combination of electrospinning and fine cutting using a cryomicrotome. The manufactured MPs were added to both pure and synthetic domestic wastewater at a concentration of 1 mg.L−1 to determine their impact on the performance of PVDF ultrafiltration membranes. The results show that PET fibres attach to the membrane in a disorganised manner with low pore coverage. The water flux was decreased by 8% for MPs in pure water and no noticeable effect in wastewater after 3 days of filtration. Additionally, the nutrient removal efficiency of the membrane was not altered by the presence of PET MPs. These findings show that MP fibres do not significantly influence the early stages of filtration for a standard concentration of MPs in wastewater treatment plant studies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.