Abstract

Laser interstitial thermal therapy (LITT) has demonstrated promise in surgical neuro-oncology because of its effectiveness in delivering precise thermal energy to lesions. The extent of ablation (EOA) is a prognostic factor in improving patient outcomes but is often affected by perilesional heatsink structures, which can lead to asymmetric ablations. The purpose of this study was to quantitatively evaluate the impact of various perilesional heatsink structures on the EOA in LITT for brain metastases. Twenty-seven procedures for 22 unique patients with brain metastases fit the inclusion criteria. Intracranial heatsink structures were identified: sulci, meninges, cerebrospinal fluid (CSF) spaces, and vasculature. Asymmetric ablation was determined by measuring 3 pairs of orthogonal distances from the proximal, midpoint, and distal locations along the laser catheter to the farthest edge of the ablation zone bilaterally. Distances from the same points on the laser catheter to the nearest heatsink were also recorded. The Heatsink Effect Index was created to serve as a proxy for asymmetric ablation. Pearson correlations, t -tests, and analysis of variance were the statistical analyses performed. From the midpoint of the catheter, the 27 heatsinks were meninges (40.7%), sulci (22.2%), vasculature (22.2%), and CSF spaces (14.8%). Across all points along the catheter track, there was a significant generalized heatsink effect on asymmetric ablations ( P < .0001). There was a negative correlation observed between asymmetric ablations and EOA from the midpoint of the laser catheter (r = -0.445, P = .020). Compared with sulci, CSF spaces trended toward a greater effect on asymmetric ablation volumes ( P = .069). This novel quantitative analysis shows that perilesional heatsinks contribute to asymmetric ablations. CSF spaces trended toward higher degrees of asymmetric ablations. Importantly, neurosurgeons may anticipate asymmetric ablations preoperatively if heatsinks are located within 13.3 mm of the laser probe midpoint. These preliminary results may guide surgical decision-making in LITT for metastatic brain lesions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.