Abstract

Dementia is primarily caused by neurodegenerative diseases like Alzheimer’s disease (AD). It affects millions worldwide, making detection and monitoring crucial. This study focuses on the detection of dementia from speech transcripts of controls and dementia groups. We propose encoding in-text pauses and filler words (e.g., “uh” and “um”) in text-based language models and thoroughly evaluating their impact on performance (e.g., accuracy). Additionally, we suggest using contrastive learning to improve performance in a multi-task framework. Our results demonstrate the effectiveness of our approaches in enhancing the model’s performance, achieving 87% accuracy and an 86% f1-score. Compared to the state of the art, our approach has similar performance despite having significantly fewer parameters. This highlights the importance of pause and filler word encoding on the detection of dementia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.