Abstract

Studying the bioavailability of sediment-bound contaminants is complicated by many reasons, such as the variable composition of the particles, their temporal variations, the low levels of contaminant concentrations, their partitioning between diverse aqueous and particulate phases, and the variety of uptake routes that may involved with the biota. Therefore, simple and innovative methodologies should be tested as analogues for natural sediments. Among them, a diverse selection of artificial particles with well-defined surface properties, in the presence and absence of commercially available humic acids, has been proposed and used to investigate the bioavailability of several organic pollutants. For this work, this model was applied to investigate the uptake and accumulation of cadmium by the freshwater oligochaete Lumbriculus variegatus. The results showed that the uptake of the metal depended on the free dissolved Cd(II) species, while the contribution from the particles was negligible. Thus, the extent of cadmium bioaccumulated from each test system could be predicted as a function of the rate of absorption of the free dissolved Cd(II) species. These species were calculated either from the particle-water partition coefficients, or by using the MINEQL+ computer program. In general, the estimated accumulation levels were in good agreement with the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call