Abstract
1200V/300A silicon carbide Schottky barrier diode (SiC SBD) and Si pin diode modules have been tested as free-wheeling diodes under conditions of clamped inductive switching over a temperature range between -40 °C and 125 °C. Over the temperature range, the turn-OFF switching energy increases by 100% for the Si pin diode, whereas that of the SiC diode is temperature invariant and is 50% less than that of the Si pin diode at 125°C. However, the SiC SBD suffers from ringing/oscillations due to an underdamped response to an RLC circuit formed among the diode depletion capacitance, parasitic inductance, and diode resistance. These oscillations contribute to additional power losses that cause the SiC SBDs to be outperformed by the Si pin diodes at -40 °C and 0 °C. The higher depletion capacitance and lower series resistance of the SiC SBD contribute to a lower damping factor compared to the Si device. Furthermore, the positive temperature coefficient of the ON-state resistance in silicon contributes to better damping at high power levels, whereas the temperature invariance of the ON-state resistance in SiC means the oscillations persist at high temperatures. SPICE simulations and experimental measurements have been used to validate analytical expressions that have been developed for the circuit damping and oscillation frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.