Abstract

The nonphotochemical quenching (NPQ) of fluorescence is an important photoprotective mechanism in particular under dynamic light conditions. Its photoprotective potential was suggested to be a functional trait of algal diversity. In the present study, the influence of the photoprotective capacity on the growth balance was investigated in two diatoms, which possess different NPQ characteristics. It was hypothesized that under fluctuating light conditions Cyclotella meneghiniana Kütz. would benefit from its large and flexible NPQ potential, whereas the comparably small NPQ capacity in Skeletonema costatum (Grev.) Cleve should exert an unfavorable impact on growth. The results of the study clearly falsify this hypothesis. Although C. meneghiniana possesses a fast NPQ component, this diatom was not able to recover its full NPQ capacity under fluctuating light. On the other hand, the induction of NPQ at relatively low irradiance in S. costatum resulted in rather small differences in the fraction of energy dissipation by the NPQ mechanism in the comparison of both diatoms. Larger differences were found in the metabolic characteristics. Both diatoms differed in their biomass composition, with a higher content of lipids in C. meneghiniana but higher amounts of carbohydrates in S. costatum. Finally, the lower degree of reduction in the biomass compensated for the higher respiration rates in S. costatum and resulted in a higher quantum efficiency of biomass production. An indirect correlation between the photoprotective and the metabolic capacity is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call