Abstract

Natural mortality rate (M) is one of the essential parameters in fishery stock assessment, however, the estimation of M is commonly rough and the changes of M due to natural and anthropogenic impacts have long been ignored. The simplification of M estimation and the influence of M variations on the assessment and management of fisheries stocks have been less well understood. This study evaluated the impacts of the changes in natural mortality of Spanish mackerel (Scomberomorus niphonius) on their management strategies with data-limited methods. We tested the performances of a variety of management procedures (MPs) with the variations of M in mackerel stock using diverse estimation methods. The results of management strategies evaluation showed that four management procedures DCAC, SPMSY, curE75 and minlenLopt1 were more robust to the changes of M than others; however, their performance were substantially influenced by the significant decrease of M from the 1970s to 2017. Relative population biomass (measure as the probability of B>0.5BMSY) increased significantly with the decrease of M, whereas the possibility of overfishing showed remarkable variations across MPs. The decrease of M had minor effects on the long-term yield of curE75 and minlenLopt1, and reduced the fluctuation of yield (measure as the probability of AAVY<15%) for DCAC, SPMSY. In general, the different methods for M estimation showed minor effects on the performance of MPs, whereas the temporal changes of M showed substantial influences. Considering the fishery status of Spanish mackerel in China, we recommended that curE75 has the best trade-off between fishery resources exploitation and conservation, and we also proposed the potentials and issues in their implementations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call