Abstract

This article deals with the approximation of a stochastic partial differential equation (SPDE) via amplitude equations. We consider an SPDE with a cubic nonlinearity perturbed by a general multiplicative noise that preserves the constant trivial solution and we study the dynamics around it for the deterministic equation being close to a bifurcation. Based on the separation of time-scales close to a change of stability, we rigorously derive an amplitude equation describing the dynamics of the bifurcating pattern.This allows us to approximate the original infinite dimensional dynamics by a simpler effective dynamics associated with the solution of the amplitude equation. To illustrate the abstract result we apply it to a simple one-dimensional stochastic Ginzburg–Landau equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.