Abstract
The comparative effect of serial stenosis and aneurysms arteries on blood flow is examined to identify atherosclerotic diseases. The finite element approach has been used to solve the continuity, momentum, and Oldroyd-B partial differential equations to analyze the blood flow. Newtonian and non-Newtonian both cases are taken for the viscoelastic response of blood. In this study, the impact of multiple stenotic and aneurysmal arteries on blood flow have been studied to determine the severity of atherosclerosis diseases through the analysis of blood behavior. The novel aspect of the study is its assessment of the severity of atherosclerotic disorders for the occurrence of serial stenosis and aneurysm simultaneously in the blood vessel wall in each of the four cases. The maximum abnormal arterial blood flow effect is found for the presence of serial stenoses compared to aneurysms which refers to the severity of atherosclerosis. At the hub of stenosis, the blood velocity magnitude and wall shear stress (WSS) are higher, whereas the arterial wall normal gradient values are lower. For all cases, the contrary results are observed at the hub of the aneurysmal model. The blood flow has been affected significantly by the increases in Reynolds number for both models. The influence of stenotic and aneurysmal arteries on blood flow is graphically illustrated in terms of the velocity profile, pressure distribution, and WSS. Medical experts may use this study's findings to assess the severity of cardiovascular diseases.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.