Abstract

Nanoplastics could modulate the fibrillation of amyloid proteins. However, many chemical functional groups are adsorbed to change the interfacial chemistry of nanoplastics in the real world. Herein, this study aimed to investigate the effects of polystyrene (PS), carboxyl modified PS (PS-COOH), and amino modified PS (PS-NH2) on the fibrillation of hen egg-white lysozyme (HEWL). Due to the differences in the interfacial chemistry, concentration was considered an essential factor. PS-NH2 (10 μg/mL) could promote the fibrillation of HEWL similar to PS (50 μg/mL) and PS-COOH (50 μg/mL). Moreover, promoting the primary nucleation step of amyloid fibril formation was the primary reason. The differences in spatial conformation of HEWL were characterized by Fourier transform-infrared spectroscopy and surface enhanced Raman spectroscopy (SERS). Strikingly, a particular signal of SERS of HEWL incubated with PS-NH2 at 1610 cm−1 was found due to the interaction between amino group of PS-NH2 and tryptophan (or tyrosine) of HEWL. Therefore, a new perspective was provided to understand the regulation of interfacial chemistry of nanoplastics on the fibrillation of amyloid proteins. Additionally, this study suggested that SERS could be a powerful method to investigate the interactions between proteins and nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call