Abstract

ABSTRACT We study the effects of two popular modified gravity theories, which incorporate very different screening mechanisms, on the angular power spectra of the thermal (tSZ) and kinematic (kSZ) components of the Sunyaev–Zeldovich effect. Using the first cosmological simulations that simultaneously incorporate both screened modified gravity and a complete galaxy formation model, we find that the tSZ and kSZ power spectra are significantly enhanced by the strengthened gravitational forces in Hu-Sawicki f(R) gravity and the normal-branch Dvali–Gabadadze–Porrati model. Employing a combination of non-radiative and full-physics simulations, we find that the extra baryonic physics present in the latter acts to suppress the tSZ power on angular scales l ≳ 3000 and the kSZ power on all tested scales, and this is found to have a substantial effect on the model differences. Our results indicate that the tSZ and kSZ power can be used as powerful probes of gravity on large scales, using data from current and upcoming surveys, provided sufficient work is conducted to understand the sensitivity of the constraints to baryonic processes that are currently not fully understood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.