Abstract

In psychological research, available data are often insufficient to estimate item factor analysis (IFA) models using traditional estimation methods, such as maximum likelihood (ML) or limited information estimators. Bayesian estimation with common-sense, moderately informative priors can greatly improve efficiency of parameter estimates and stabilize estimation. There are a variety of methods available to evaluate model fit in a Bayesian framework; however, past work investigating Bayesian model fit assessment for IFA models has assumed flat priors, which have no advantage over ML in limited data settings. In this paper, we evaluated the impact of moderately informative priors on ability to detect model misfit for several candidate indices: posterior predictive checks based on the observed score distribution, leave-one-out cross-validation, and widely available information criterion (WAIC). We found that although Bayesian estimation with moderately informative priors is an excellent aid for estimating challenging IFA models, methods for testing model fit in these circumstances are inadequate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.