Abstract
Many imputation methods have been developed over the years and tested mostly under ideal settings. Surprisingly, there is no detailed research on how imputation methods perform when the idealized assumptions about the distribution of data and/or model assumptions are partly not fulfilled. This research looks into the susceptibility of imputation techniques, particularly in relation to outliers, misclassifications, and incorrect model specifications. This is crucial knowledge about how well the methods convince in everyday life because, in reality, conditions are usually not ideal, and model assumptions may not hold. The data may not fit the defined models well. Outliers distort the estimates, and misclassifications reduce the quality of most imputation methods. Several different evaluation measures are discussed, from comparing imputed values with true values or comparing certain statistics, from the performance of classifiers to the variance of estimated parameters. Some well-known imputation methods are compared based on real data and simulations. It turns out that robust conditional imputation methods outperform other methods for real data and simulation settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.