Abstract

Endogenous metabolites and exogenous chemicals can induce covalent modifications on DNA,producing DNA lesions. The N2 of guanine was shown to be a common alkylation site in DNA; however, not much is known about the influence of the size of the alkyl group in N2-alkyldG lesions on cellular DNA replication or how translesion synthesis (TLS) polymerases modulate DNA replication past these lesions in human cells. To answer these questions, we employ a robust shuttle vector method to investigate the impact of four N2-alkyldG lesions (i.e., with the alkyl group being a methyl, ethyl, n-propyl, or n-butyl group) on DNA replication in human cells. We find that replication through the N2-alkyldG lesions was highly efficient and accurate in HEK293T cells or isogenic CRISPR-engineered cells with deficiency in polymerase (Pol) ζ or Pol η. Genetic ablation of Pol ι, Pol κ, or Rev1, however, results in decreased bypass efficiencies and elicits substantial frequencies of G → A transition and G → T transversion mutations for these lesions. Moreover, further depletion of Pol ζ in Pol κ- or Pol ι-deficient cells gives rise to elevated rates of G → A and G → T mutations and substantially decreased bypass efficiencies. Cumulatively, we demonstrate that the error-free replication past the N2-alkyldG lesions is facilitated by a specific subset of TLS polymerases, and we find that longer alkyl chains in these lesions induce diminished bypass efficiency and fidelity in DNA replication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call