Abstract

The development of (K,Na)NbO3-based ceramics is attracting great interest due to growing environmental concerns. We investigated the effect of sintering dwell times on the microstructure and on the electromechanical properties on (K,Na)NbO3-based ceramic fibres. The results show that microstructural control is the impetus for the development of the improved electromechanical properties as it was found that a shorter sintering dwell time improved the small signal properties while a longer dwell profile improved the large signal properties. Varying the sintering dwell time resulted in the formation of a secondary phase which displaces the alkaline elements, from the main perovskite phase, generating the stabilization of the orthorhombic phase at room temperature. The microstructure has a close relationship to the electromechanical response, that is, a uniform and fine grain microstructure is required for high mechanical strength. A prototype sensor for applications like structural health monitoring, that produces a detectable electromechanical response was produced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.