Abstract
China has been experiencing severe ozone pollution problems in recent years. While a number of studies have focused on the ozone-pollution-prone regions such as the North China Plain, Yangtze River Delta, and Pearl River Delta regions, few studies have investigated the mechanisms modulating the interannual variability of ozone concentrations in Shandong Province, where a large population is located and is often subject to ozone pollution. By utilizing both the reanalysis dataset and regional numerical model (WRF-CMAQ), we delve into the potential governing mechanisms of ozone pollution in Shandong Province—especially over the major port city of Qingdao—during summer 2014–2019. During this period, ozone pollution in Qingdao exceeded the tier II standard of the Chinese National Ambient Air Quality (GB 3095-2012) for 75 days. From the perspective of meteorology, the high-pressure ridge over Baikal Lake and to its northeast, which leads to a relatively low humidity and sufficient sunlight, is the most critical weather system inducing high-ozone events in Qingdao. In terms of emissions, biogenic emissions contribute to ozone enhancement close to 10 ppb in the west and north of Shandong Province. Numerical experiments show that the local impact of biogenic emissions on ozone production in Shandong Province is relatively small, whereas biogenic emissions on the southern flank of Shandong Province enhance ozone production and further transport northeastward, resulting in an increase in ozone concentrations over Shandong Province. For the port city of Qingdao, ship emissions increase ozone concentrations when sea breezes (easterlies) prevail over Qingdao, with the 95th percentile reaching 8.7 ppb. The findings in this study have important implications for future ozone pollution in Shandong Province, as well as the northern and coastal areas in China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of environmental research and public health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.