Abstract

AbstractThe resonant type power supplies of medium frequency designed for magnetron sputtering processes often use pulse density modulation to regulate the average discharge power level. While the output power level changes then number of pulses in a group changes, but the discharge current pulses are the same from pulse to pulse: their parameters (duration time, amplitude) do not change with the discharge power. The goal of this paper is to present the influence of medium frequency discharge power level on the direct current I-V characteristics of a single Langmuir probe and resulting plasma parameters caused by the pulse density modulation. The sputtering processes of titanium and copper were diagnosed at two spatial positions. The measured Langmuir probe I-V characteristics showed strong dependence on the discharge power. As the discharge powering pulses stay the same with the discharge power level change, such influence was unlikely to occur. Using time-resolved analysis of probe current waveforms the origin of this influence was indicated. The influence of discharge power level on the single probe Langmuir I-V characteristics and resulting plasma parameters was eliminated using a simple method of scaling the results. Finally, the reliable plasma parameters were calculated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.