Abstract

Coupled electro-thermo-mechanical simulation and Raman thermometry were utilized to analyze the evolution of mechanical stress in AlGaN/GaN high electron mobility transistors (HEMTs). This combined analysis was correlated with electrical step stress tests to determine the influence of mechanical stress on the degradation of actual devices under diverse bias conditions. It was found that the total stress as opposed to one dominant stress component correlated the best with the degradation of the HEMT devices. These results suggest that minimizing the total stress as opposed to the inverse piezoelectric stress in the device is necessary in order to avoid device degradation which can be accomplished through various growth methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.