Abstract

Pilot (50 litre) and small scale (700 mL) brewing trials conducted using, similar brewing protocols with 25 different malts, indicated that differences in malt quality influenced foam stability (Rudin head retention value) by up to 24%. In addition to conventional measures of malt quality, enzyme-linked immunosorbent assays (ELISA) were used to measure the level of the putative foam-positive proteins, BSZ4 (protein Z4), BSZ7 (protein Z7), BSZ7b and lipid transfer protein 1 (LTP1). Regression analysis performed on the combined pilot and small scale data sets identified that malt BSZ4, wort β-glucan and wort viscosity, and beer protein, β-glucan and arabinoxylan were positively correlated with foam stability, while malt Kolbach index (KI), and beer FAN were negatively correlated with foam stability. Potentially foam-positive proteins such as BSZ7 and LTP1 were not correlated with foam stability. The negative correlation of BSZ4 level with KI suggested an additional role for BSZ4 in influencing protein modification. Step-wise multiple regression indicated that up to 82% of the variation in foam stability could be predicted from the malt and beer characteristics measured, demonstrating that there are a number of inter related malt derived factors that influence beer foam stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call