Abstract

IntroductionViral outbreaks present a particular challenge in countries in Africa where there is already a high incidence of other infectious diseases, including malaria which can alter immune responses to secondary infection. Ebola virus disease (EVD) is one such problem; understanding how Plasmodium spp. and Ebolavirus (EBOV) interact is important for future outbreaks.MethodsWe conducted a systematic review in PubMed and Web of Science to find peer-reviewed papers with primary data literature to determine 1) prevalence of EBOV/Plasmodium spp. coinfection, 2) effect of EBOV/Plasmodium spp. coinfection on EVD pathology and the immune response, 3) impact of EBOV/Plasmodium spp. coinfection on the outcome of EVD-related mortality. Random effects meta-analyses were conducted with the R package meta to produce overall proportion and effect estimates as well as measure between-study heterogeneity.ResultsFrom 322 peer-reviewed papers, 17 were included in the qualitative review and nine were included in a meta-analysis. Prevalence of coinfection was between 19% and 72%. One study reported significantly lower coagulatory response biomarkers in coinfected cases but no difference in inflammatory markers. Case fatality rates were similar between EBOV(+)/Pl(+) and EBOV(+)/Pl(-) cases (62.8%, 95% CI 49.3–74.6 and 56.7%, 95% CI 53.2–60.1, respectively), and there was no significant difference in risk of mortality (RR 1.09, 95% CI 0.90–1.31) although heterogeneity between studies was high. One in vivo mouse model laboratory study found no difference in mortality by infection status, but another found prior acute Plasmodium yoeli infection was protective against morbidity and mortality via the IFN-γ signalling pathway.ConclusionThe literature was inconclusive; studies varied widely and there was little attempt to adjust for confounding variables. Laboratory studies may present the best option to answer how pathogens interact within the body but improvement in data collection and analysis and in diagnostic methods would aid patient studies in the future.

Highlights

  • Viral outbreaks present a particular challenge in countries in Africa where there is already a high incidence of other infectious diseases, including malaria which can alter immune responses to secondary infection

  • Case fatality rates were similar between EBOV(+)/Pl (+) and EBOV(+)/Pl(-) cases (62.8%, 95% CI 49.3–74.6 and 56.7%, 95% CI 53.2–60.1, respectively), and there was no significant difference in risk of mortality (RR 1.09, 95% CI 0.90–1.31) heterogeneity between studies was high

  • One in vivo mouse model laboratory study found no difference in mortality by infection status, but another found prior acute Plasmodium yoeli infection was protective against morbidity and mortality via the IFNγ signalling pathway

Read more

Summary

Methods

We conducted a systematic review in PubMed and Web of Science to find peer-reviewed papers with primary data literature to determine 1) prevalence of EBOV/Plasmodium spp. coinfection, 2) effect of EBOV/Plasmodium spp. coinfection on EVD pathology and the immune response, 3) impact of EBOV/Plasmodium spp. coinfection on the outcome of EVD-related mortality. Random effects meta-analyses were conducted with the R package meta to produce overall proportion and effect estimates as well as measure between-study heterogeneity

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call