Abstract
Research indicates that air pollution is a risk factor of an increased occurrence of diseases. However, evidence is limited on the effects of the pollution index on disease and whether temperature modifies the effects. The objectives were (i) to explore the effects of the Air Pollution Index (API) and specific indices for pollutants (PM10, NO2, and SO2) on respiratory emergency department (ED) visits in Beijing and (ii) to investigate whether temperature modified the effects of main air pollutants on respiratory ED visits. A quasi-Poisson generalized additive model was employed to examine the association of API and indices for pollutants with respiratory disease. Bivariate response surface model and stratification model (cold days, moderately cold days, moderately hot days, and hot days) were used to analyze the modification effects of temperature on air pollution and respiratory disease. The results showed that (i) the effects of API on respiratory diseases were similar to the index for PM10 in Beijing. (ii) API and PM10 were associated with increased respiratory ED visits on cold days and moderately cold days. Furthermore, the effects of PM10 on respiratory disease on moderately cold days [Relative risk (RR) = 1.006 per 10 μg/m3, 95% CI 1.002-1.009] were stronger than on cold days (RR = 1.004 per 10 μg/m3, 95% CI 1.000-1.008). (iii) PM10 (API) had a greater impact on children aged 10 to 17 years and females on moderately cold days, while the elderly had an increased risk of respiratory disease to PM10 (RR = 1.008 per 10 μg/m3, 95% CI 1.002-1.013) and API (RR = 1.013 per 10, 95% CI 1.004-1.022) on cold days. In conclusion, temperature can modify the association between API and respiratory morbidity. A stronger correlation existed between PM10 and respiratory diseases on moderately cold days, while the effects of cold days were less than that attributable to moderately cold days.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.