Abstract

BackgroundThalassemia is the most prevalent single-gene disorder. Myocardial and hepatic iron depositions lead to complications and eventually death. We aimed to assess the diagnostic efficacy of magnetic resonance imaging T2* (MRI T2*) in quantifying iron overload in liver and heart in transfusion-dependent B-thalassemia major (TDT) children.MethodsProspective clinical study was carried on sixty children diagnosed with TDT. All of them underwent laboratory investigations, including CBC, serum iron, and ferritin levels. MRI T2* of the heart and liver was carried out to measure the iron overload and estimate the left ventricular ejection fraction (LVEF).ResultsThirty-eight males and 22 females with TDT with a mean age of 13.23 years were included. Twenty cases (33.3%) had severe liver iron overload, while 36 (60%) had normal cardiac iron. There was a moderate significant negative association between hepatic and cardiac iron deposition (P = 0.03). All cases with severe cardiac iron overload had impaired LVEF below 56%. A non-significant positive association was noticed between cardiac iron deposition and LVEF in T2* (P = 0.08). A moderate negative significant association was detected between hepatic iron deposition and serum ferritin, while a fair negative significant association was found between serum ferritin and cardiac iron deposition with P values of 0.04 and 0.02, respectively.ConclusionMRI T2* is the gold standard for monitoring and follow-up of iron overload in the heart and liver. It should be routinely performed in all TDT children as liver iron, and serum ferritin do not reflect cardiac iron overload.

Highlights

  • Thalassemia is the most prevalent single-gene disorder

  • A significant statistical difference was observed between hepatic and cardiac iron deposition, where the frequency of iron deposition was greater in the liver than in the heart, with a P value of 0.02 (Table 2)

  • All cases with severe cardiac iron overload (10%) had impaired left ventricular ejection fraction less than 56%

Read more

Summary

Introduction

Thalassemia is the most prevalent single-gene disorder. Myocardial and hepatic iron depositions lead to complications and eventually death. Thalassemia is the most prevalent single-gene disorder globally, with around 94 million heterozygous for beta-thalassemia and 60,000 homozygotes born every year. It is a hereditary hemolytic disease resulting in abnormal hemoglobin synthesis and is common among. Individuals with TM have chronic hemolytic anemia, which often needs lifelong transfusion therapy and can result in tissue iron overload. Cardiovascular complications resulting from myocardial iron overload continue to be a major reason for morbidity and death in those cases [2]. Even though survivability is increasing in cohorts of cases treated with chelation therapy at an early age [3], myocardial siderosis

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call