Abstract

In this paper, group velocity and frequency wave can be tuned with an applied external magnetic field when we increase the magnetic field from 0-4 tesla the frequency range can be reduced for given semiconductor materials. The excitation of the two layers of semiconducting material propagating band structures can be explained by the oscillations of electrons in semiconductors on applying the magnetic field, we study the effects of an external magnetic field in the band structure of C-insulator-GaAs materials in presence of surface magneto plasmons concerning plasma frequency below and above the surface band structures. The surface magneto plasmon bands get excited and show the dispersion relation with frequency range. The higher dispersion band moves in faster than the lower dispersion band structure of semiconducting material. The most energy is stored in a lower surface of magneto plasmon. When we increase the magnetic field, the surface of the semiconductor moves opposite to the lower surface of the semiconductor material. Here, we use semiconducting materials instead of metals because metal cannot support a wide frequency range on the magneto-plasmonic surface providing a good tunning property and more flexibility in this mechanism, which is widely useful in telecommunications, magneto-plasmonic devices, and data processing unit. This study is widely more promising due to its wavelength confinements of electromagnetic fields on semiconducting and insulating layers. Due to nonreciprocal effects, the dispersion of frequency waves varies with different band structures and group velocity also varies with two propagating directions among semiconductor-insulator-semiconductor layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call