Abstract

The long-range transport of biomass burning pollutants from Southeast Asia has a significant impact on air quality in China. In this study, the Moderate Resolution Imaging Spectroradiometer (MODIS) fire data and aerosol optical depth (AOD) products and the Tropospheric Monitoring Instrument (TROPOMI) carbon monoxide (CO) data were used to analyze the impact of air pollution caused by biomass burning in Southeast Asia on southern China. Results showed that Yunnan, Guangdong and Guangxi were deeply affected by biomass burning emissions from March to April during 2016–2020. Comparing the data for fires on the Indochinese Peninsula and southern provinces of China, it is obvious that the contribution of pollutants emitted by local biomass burning in China to air pollution is only a small possibility. The distribution of CO showed that the overall emissions increased greatly from March to April, and there was an obvious transmission process. In addition, the MODIS AOD in areas close to the national boundary of China is at a high level (>0.6), and the AOD in the southwest of Guangxi province and the southeast of Yunnan Province is above 0.8. Combined with a typical air pollution event in southern China, the UVAI combined with wind direction and other meteorological data showed that the pollutants were transferred from the Indochinese Peninsula to southern China under the southwest monsoon. The PM2.5 data from ground-based measurements and backward tracking were used to verify the pollutant source of the pollution event, and it was concluded that the degree of pollution in Yunnan, Guangxi and Guangdong provinces was related to the distance from the Indochinese Peninsula. Results indicate that it is necessary to carry out in-depth research on the impact of cross-border air pollution transport on domestic air quality as soon as possible and to actively cooperate with foreign countries to carry out pollution source research and control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.