Abstract
AbstractLee waves play an important role in transferring energy from the geostrophic eddy field to turbulent mixing in the Southern Ocean. As such, lee waves can impact the Southern Ocean circulation and modulate its response to changing climate through their regulation on the eddy field and turbulent mixing. The drag effect of lee waves on the eddy field and the mixing effect of lee waves on the tracer field have been studied separately to show their importance. However, it remains unclear how the drag and mixing effects act together to modify the Southern Ocean circulation. In this study, a lee wave parameterization that includes both lee wave drag and its associated lee-wave-driven mixing is developed and implemented in an eddy-resolving idealized model of the Southern Ocean to simulate and quantify the impacts of lee waves on the Southern Ocean circulation. The results show that lee waves enhance the baroclinic transport of the Antarctic Circumpolar Current (ACC) and strengthen the lower overturning circulation. The impact of lee waves on the large-scale circulation are explained by the control of lee wave drag on isopycnal slopes through their effect on eddies, and by the control of lee-wave-driven mixing on deep stratification and water mass transformation. The results also show that the drag and mixing effects are coupled such that they act to weaken one another. The implication is that the future parameterization of lee waves in global ocean and climate models should take both drag and mixing effects into consideration for a more accurate representation of their impact on the ocean circulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.