Abstract

Summary The impacts of formation layering on hydraulic fracture containment and on pumping energy are critical factors in a successful stimulation treatment. Conventionally, it is considered that the in-situ stress is the dominant factor controlling the fracture height. The influence of mechanical properties on fracture height growth is often ignored or is limited to consideration of different Young’s moduli. Also, it is commonly assumed that the interfaces between different layers are perfectly bounded without slippage, and interface permeability is not considered. In-situ experiments have demonstrated that variation of modulus and in-situ stress alone cannot explain the containment of hydraulic fractures observed in the field (Warpinski et al. 1998). Enhanced toughness, in-situ stress, interface slip, and energy dissipation in the layered rocks should be combined to contribute to the fracture containment analysis. In this study, we consider these factors in a fully coupled 3D hydraulic fracture simulator developed based on the finite element method. We use laboratory and numerical simulations to investigate these factors and how they affect hydraulic fracture propagation, height growth, and injection pressure. The 3D fully coupled hydromechanical model uses a special zero-thickness interface element and the cohesive zone model (CZM) to simulate fracture propagation, interface slippage, and fluid flow in fractures. The nonlinear mechanical behavior of frictional sliding along interface surfaces is considered. The hydromechanical model has been verified successfully through benchmarked analytical solutions. The influence of layered Young’s modulus on fracture height growth in layered formations is analyzed. The formation interfaces between different layers are simulated explicitly through the use of the hydromechanical interface element. The impacts of mechanical and hydraulic properties of the formation interfaces on hydraulic fracture propagation are studied. Hydraulic fractures tend to propagate in the layer with lower Young’s modulus so that soft layers could potentially act as barriers to limit the height growth of hydraulic fractures. Contrary to the conventional view, the location of hydraulic fracturing (in softer vs. stiffer layers) does affect fracture geometry evolution. In addition, depending on the mechanical properties and the conductivity of the interfaces, the shear slippage and/or opening along the formation interfaces could result in flow along the interface surfaces and terminate the fracture growth. The frictional slippage along the interfaces can serve as an effective mechanism of containment of hydraulic fractures in layered formations. It is suggested that whether a hydraulic fracture would cross a discontinuity depends not only on the layers’ mechanical properties but also on the hydraulic properties of the discontinuity; both the frictional slippage and fluid pressure along horizontal formation interfaces contribute to the reinitiation of a hydraulic fracture from a pre-existing flaw along the interfaces, producing an offset from the interception point to the reinitiation point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.